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An operator equation is obtained, the solution of which is the natural (residual) stress tensor that reduces to zero the level of 
stresses from an external load in a specified region of an elastic solid. It is shown that the operator of this equation possesses 
the property of contraction. The solution is found by the method of successive approximations. Analytical and numerical examples 
are given. © 2001 Elsevier Science Ltd. All fights reserved. 

One of the means of influencing the operating efficiency of structural components is to create fields of 
natural (residual) stresses in these components during their manufacture [1-3]. Depending on the 
working conditions, various requirements can be formulated regarding the characteristics of these fields. 
In particular, the following problem of optimizing the stressed state is possible: for a specified external 
load, it is required to find those residual stresses that, together with the stresses from the load, enable 
a stressed state to be obtained in individual parts of the body as close to zero as desired. 

1. FORMULATION OF THE PROBLEM 

After the completion of many technological operations in the manufacture of structural components, 
so-called initial strains appear in them that do not satisfy the conditions of compatibility [4]. In other 
words, material volumes free of bonds acquire a residual strain that makes it impossible to construct 
a continuous solid from then. Therefore, the response of a material striving to retain continuity manifests 
itself in the appearance in the solid of self-balanced forces which produce strains, the magnitude of 
which in such that, together with the initial strains, satisfies the conditions of compatibility, and the 
solid retains its continuity. Thus 

E' = •* + e" (1.1) 
where e* and e" are symmetrical second-rank tensors of the initial strains and of the strains produced 
by the self-balanced forces, and Inc e' = 0 (Inc is the operator of incompatibility [5]). Note that the 
forces mentioned are determined by the symmetric second-rank stress tensor tensor &', the components 
of which are the primary or residual stresses. They are obviously related to the components of the tensor 
e" by Hooke's law, namely o" = C "- e" (e" = S -- o~'). Here, C and S are symmetrical, in general, 
anisotropic, fourth-rank tensors of the modulus of elasticity and the compliance respectively, and the 
two dots denote the double scalar product of the tensors [5]. 

To determine the field of the natural stresses in an elastic solid with a specified field of initial strains, 
it is necessary to solve the boundary-value problem 

V-¢~"=O, e '=defu ,  c'=C..(e'-e*),  a ' . n l r = O  (1.2) 

The first group of equations is the equilibrium equations, the second group is the Cauchy relations, 
the third group is the constitutive relations, which are obtained by solving Eq. (1.1) for the stresses, 
and the final equation is the boundary conditions when there are no external forces; n is the vector of 
the outward normal to the fairly smooth boundary F of the solid V. 

An external load produces a stress-strain state in the body, which is found by solving the boundary- 
value problem 

V- p' = 0, e" = def u, p' = C.-e', p'- n Ir = t (1.3) 
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where p '  and e" are the stress and strain tensors respectively, and t is the vector of external forces. 
If in this case there are initial strains in the solid, then, according to the principle of superposition, 

the stressed state in it is determined by the sum of the tensors p'(x) + d '(x) ,  x ~ V. 
It will be assumed that the tensor d' (x)  optimizes the stressed state in the elastic solid if, in some 

region 111 C V specified in advance, the following equality holds 

;~(x)a"(x) + X(x)p'(x)  = 0, X(x) = {1, x ~ Vt: 0, x ~ v I } (1.4) 

Hence the problem can be formulated as follows: it is required to find the field of initial strains (the 
tensor e*(x)) for which residual stresses (the tensor d ' (x) )  arise such that, in the region V1, Eq. (1.4) 
is satisfied. 

2. THE P R O P E R T I E S  OF T H E  BASIC E Q U A T I O N S  

To solve the problem, we will first clarify some properties of systems of equations (1.2) and (1.3). Consider 
the Hilbert energy space T, which consists of all possible stress tensors defined in V[6]. The scalar product 
and the norm in it are specified by the formulae 

(p,, p2) = I P , S p 2 d V ,  IlPll = = (p, p), p, p,,  r 
V 

The space T is the orthogonal sum of the subspaces [6] 

T 1 = { p ' : p ' = C . . e ' ,  Jnke '=0},  T2 ={ t~" :V .G"=0 ,  t~" .nlr=0} 

Note that the solutions of boundary-value problem (1.3) for different values of t are elements of the 
subspace Ta, while the solutions of problem (1.2) for different e* are elements of the subspace T2. 

We will represent the boundary-value problem (1.2) in the form of the operator equation 
d '  = Ao*, where o* = C " e* is the pseudostress tensor. The linear operatorA is the difference of 
operators A = B - A,  where A is the identity operator and B is defined by the system of equations 

V . t~ '=V.o* ,  e ' = d e f u ,  ~ ' = C . . U ,  ~ ' . n l r = a * . n l r  (2.1) 

i.e. Ba* = d .  

Theorem 1. The solution of system (2.1) is unique and is the orthogonal projection of the element 
a* E T onto the subspace Ta. 

Proof. It is obvious that the solution of system (2.1) is a certain tensor d ~ T1. We will find the 
coefficients of the expansion of this tensor in a Fourier series in the orthogonal basis {qk} of the subspace 
7"1. Using the Gauss' formula, we obtain 

Hence 

(t~',q4 ) = S ~ ' .  . S. .q4dV = STY'..defvkdV = -~ V .t~" . u 4 dV + ] n .t~" . v k d r  = 
V V V F 

= - i V . a * .  ukdV + jn. t~*,  u4dT'= Its*. defu4dV =(G*,q4 ) 
V F V 

a ' =  T. (o',qk )q4 = ~ (~*,q4 )q4 = PI a* 
k=l  k= l  

where P1 is the operator of orthogonal projection onto the subspace T1. Thus, B = P1. 
Further, suppose there are two solutions a~ ~ T1 and a~ ~ T1. Then a = ~ - ~2 a T1, whereas 

a ~ T2, since V.  a = 0 and a" n I r = 0. Consequently, o ~ T1 N T2. However, ?'1 N T2 --- 0 and hence 
a -- 0 and o~ = o~. 

Theorem 2. The solution of system (1.2) is the orthogonal projection of the element o* ~ T onto the 
subspace T2, taken with a minus sign. 
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Proof. We have A = B - A = P1 - (P1 + P1) = -P2.  T h e n  o = -P2o*.  H e r e  P2 is the o r thopro jec to r  
on to  the subspace  T2. 

Corollary 1. Since P2 = A - P1, we  have 

(I"=-P2(~* = Pi(~* -(~* = ~ ((~*,qk )q* -(~* 
k=l 

Corollary 2. For  the solid to be  f ree  of  na tura l  stresses, it is necessary  and sufficient that  o* e T1, i.e. 
Inc  e* = 0. 

3. M E T H O D  O F  S O L U T I O N  

Equa t ion  (1.4) can  now be wri t ten  in the fo rm ~P2a* = ~p'  or, taking into account  the  fact that  
P2 = A -  P1, 

~t~* = x P l o ' *  - XP' 

We will seek  the solut ion o f  this equa t ion  in the set  zT1. I f  o* e xT1, then  ZO* = a*(2Z = X). Then ,  
finally 

t~* = xPto'* + ZP' (3.1) 

Let us estimate the norm of the operator zP  1. We have II zP1 II <~ II x II lIP1 II. It is well known [7] 
that IIP~ II = 1. Further 

I l x p l l  = = Ixp S xpdv= j p..S..pdV < p..S..pdV=UPll 2 
V V I V 

where  p . .  S " p  is a posit ive-defini te quadra t ic  form,  and p is a cer tain e l emen t  f rom the set  M C T 
which compr ises  tensors  def ined in the region V', where  V' is any region in or  coinciding with V, where  
V1 C V'. Then,  regarding  Z as an o p e r a t o r  acting f r o m M  C T i n t o  zT,  we obta in  I]Z II < 1. If, however ,  
Z acts f rom z T i n t o  zT,  then  II x II = 1. The  ope ra to rP1  reflects any e lements  f rom T i n t o M  apar t  f rom 
the e lements  ZP" e /'1. I t  follows tha t  the ope ra to r  zP1, def ined in the set  zTI\ZT1 f3/ '1 ,  has 
IIzP1 II < 1. The re fo re ,  it is a cont rac t ion  ope ra to r  and the solut ion of  Eq. (3.1) can be  r ep resen ted  
by a converging series 

t~* = ,~. (~Pj)" 7.P', is" e ~T~ ( 3 . 2 )  
n=O 

The  requi red  field of  initial strains is then  defined by the t ensor  e ° = S "- a*. 

Remarks 1. The condition XP' e 7"1 is satisfied when the region I/1 intersects the solid V, i.e. the region I~V1 is 
not a simply connected region. 

2. Since P2(o" + o ~) = P2o', where a is an arbitrary element of 7"1, any tensor e = e* + e', where 
e' = S . .  t¢, also initiates a field of residual stresses possessing property (1.4). Consequently, it is possible to adjust 
the field of initial strains in such a way that its parameters are technologically simpler to realize. 

3. If it is necessary to create a specified field of residual stresses tf'(x) in the solid, the field of initial strains is 
determined by the tensor e" = e" + e', where e" = S .. t¢', and e" is an arbitrary tensor of the combined strains. 

4. E X A M P L E S  

Example 1. Suppose a thin circular disc is stretched by a load q, uniformly distributed around its rim. It is required 
to find the initial strains which give rise to residual stresses together with the stresses from the external load, give 
a zero stressed state in the central zone of radius R 1. 

The solutions of boundary-value problems (1.3) and (1.2) are given respectively by the formulae 

I - v  
' ' " (4.1) Pr=Po=q'  e r=e°=q  E 



07 = o;' = - l ~ ' e  g' - R, ~ 
2 R 2 

°e'r 2 kR r )" 

(4.2) 

e r = e ~ = ~ e  I + v + ( I - v )  , O<~r<~R I 

• I o .o2[ I -v . , .  I + v l  
= ,,,  L - p - - - ,  7 / '  R, r R 

Y 

The subscripts r and 0 denote the radial and tangential stresses and strains, E is Young's modulus, v is Poisson's 
ratio, and e" = e; + e~ are the initial strains in the central zone. Using the procedure described above, taking account 
of formulae (4.1) and (4.2) and the equality P1 = B, we obtain 

XO*=~Or=XOo=~(q~ (l+v)+-~(l-v)~-~]n=2~,q ( l - v  I 
.--o R j R 

It follows that e" = 2q(1 - R 2 /R2)  -1E -1. Then 

Gr=G'~=- q, 0 ~ r ~ R i ;  G~,r= I+ , R I ~ r ~ R  

and the overall stresses in the central zone are equal to zero, while in the ring surrounding this region we obtain 
the well-known solution of the Lam~ problem [8]. 

Example 2. Consider a thin rectangular plate 160 mm wide and 200 mm high, stretched along the y axis by a 
uniformly distributed load of unit intensity. Figure 1 shows one-quarter of the plate. In five regions measuring 5 
mm x 5mm, denoted by the numeral 6 and situated in the centre and symmetrical about the axes, it is required to 
find the initial strains which cause the appearance of residual stresses that, in the regions indicated, together with 
the stresses from stretching, give a zero value. The centre of region 6, situated in Fig. 1 closer to the edges of the 
plate, has the coordinates x = 32 mm, y = 107 mm. 

The solutions of boundary-value problems (1.2) and (1.3) in the present example were found by the finite-element 
method. Carrying out calculations using the procedure described above, we obtain in the central region ex = -1.241 
x 10 -5, e~ = 7.718 x 10 -5 and e b = -1.048 x 10 -6, and in the remaining quadrangles ex = -1.365 x 10 -5, e~ = 8.121 
x 10 -5 and ~ = --41 x 10-6. The isolines of the intensity of natural stresses 4" [8] are shown in Fig. 1, where the 
numbers by the curves correspond to the isolines with the corresponding value of 4 '  in kg/mm 2. 

Figure 2 shows isolines of the intensity of the overall stresses, where the numbers by the curves correspond to 
the oi values in kg/mm 2. 

Example 3. Consider the same plate under the same load, only with a central circular hole of radius 3.5 mm. A 
fragment of the plate in the region of the concentrator is shown in Figs 3 and 4. In two zones positioned symmetrically 
at the points of stress concentrations (Fig. 4, region A of width 9 mm and height 0.5 mm), it is required to calculate 
the initial strains which initiate internal stresses that, together with the stresses from the external load, give zero 
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values in these zones. Again, we carry out calculations using the finite-element method, region A being divided 
into three equal quadrangular elements. As a result, we obtain in the element adjoining the circular boundary e~ 
= -3.7194 x 10 -5, e~, = 1.3215 x 10- 3, and r~ = 1.3598 x 10- s, in the middle element e; = -1.9404 x 10- s, ~ = 
1.0623 x 10 -3 and ~ = 2.4654 x 10 -s and in the final element e; = 4.2409 x 10 -6, ~ = 5.6635 x 10 -6, and r~y = 
3.2819 x 10 -6. 

Figure 3 shows isolines of the intensity of natural stresses, and Fig. 4 shows isolines of  the intensity of the overall 
stresses. The numbers by the curves correspond to values of the stress intensity in kg/mm 2. 

Figure 5 shows the change in the intensity of the overall stresses along the x axis. Curve I is the initial solution, 
and curves 2 and 3 are the overall stresses in cases when, to determine the primary strains, we used 2 and 40 terms 
of series (3.2). From the form of curve 2 we can conclude that it is possible to calculate the field of residual stresses 
that facilitates equalization of the stresses and considerably reduces their concentration. 

Remark 4. Using the exact solution, it is possible to determine the components of  the initial strain tensor that 
have the main influence on the characteristics of the field of residual stresses. For example, in problems 2 and 3 
this is the component G. The realization of positive residual strains G in the optimization zones will obviously lead 
to the appearance in them of compressive residual stresses opposite in sign to the stresses from the external load. 
As a result, the stress level there will be reduced considerably, although not to zero. 

0 x 

Fig. 3 

Y 

x 

Fig. 4 
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In practice, methods for producing such strains are well known. One of them is the surface plastic deformation 
method, where, at a given point, plastic cold working is carried out. For example, for plates with a circular ltole, 
roller burnishing of the surface of the hole with a cylindrical tool is employed to induce plastic strain, as a result 
of which surface compressive stresses appear. 

Remark 5. The isolines given in Figs 1-4 serve to illustrate the qualitative nature of the stress distribution outside 
the optimization zones. They were plotted using a fairly crude piecewise-linear approximation. Smoothing algorithms 
were not used. Therefore, breaks appear in the isolines at points where fairly sudden change in stresses occur. 
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